HILLEBRANDT BAYOU AND NECHES TIDAL PROJECT UPDATE

Michael Schramm - Texas Water Resources Institute August 22, 2019

Historical Bacteria Dataset for Neches River Tidal

- -Geomean criterion (35 cfu/100mL) -0601_01
 - → 0601_02
 → 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 →
 0601_03
 - **--**0601_04

Summary Statistics

- Neches Tidal-
- 210 sq. miles (134,881 acres)
- 47,319 estimated population
- 4,061 estimated on-site sewage facilities
- 32 TPDES/NPDES discharge permits (9 with bacteria reporting requirements)
- 2 MS4 Phase I Permit Holders
- 7 MS4 Phase II Permit Holders

Hillebrandt Bayou Watershed

Land Use Land Cover 2016 National Land Cover Database

Historical Bacteria Dataset for AU0704_02

Geomean criterion (126 MPN/100mL)

Summary Statistics

- Hillebrandt Bayou-
- 36.02 sq. miles (23,053 acres)
- 97,617 estimated population
- 4 estimated on-site sewage facilities
- 0 TPDES/NPDES discharge permits
- 2 MS4 Phase I Permit Holders

Draft 2018 Texas Integrated Report Assessment Results

Water Body	Assessment Unit (AU)	Parameter	Data Range	No. of Samples	Station Geometric Mean (MPN/100mL)
Neches River Tidal	0601_01	Enterococcus	12/01/09 - 11/30/16	28	170.01
Neches River Tidal	0601_02	Enterococcus	12/01/09 - 11/30/16	28	166.22
Neches River Tidal	0601_03	Enterococcus	12/01/09 - 11/30/16	28	300.31
Neches River Tidal	0601_04	Enterococcus	12/01/09 - 11/30/16	28	102.89
Hillebrandt Bayou	0704_02	E. coli	12/01/09 - 11/30/16	26	254.74

ALLOCATION TOOL PROCESS

Load Duration Curve (LDC) – Method for using observed data to estimate and visualize streamflows and measured pollutant concentrations.

- Advantages
 - Requires less watershed specific data than deterministic models (eg. SWAT);
 - Relatively simple, visualize under what conditions exceedances occur and broadly link types of bacteria sources
- Weaknesses
 - No predictive capabilities, cannot evaluate how practices will impact bacteria loadings;
 - Does not quantify specific sources

General Process for Developing Load Duration Curves

Develop Daily Flows Plot Flow Duration Curve

Develop Load Duration Curve

- Identify location of interest
- Use USGS daily streamflows if available
- Estimate daily streamflows using Drainage Area Ratio
- Calculate the percent exceedance for every daily mean streamflow value
- Plot flow values against the exceedance values
- Convert daily flow to allowable load (concentration times volume)
- Plot allowable load against exceedance values
- Overlay measured concentrations converted to daily loads

Hillebrandt Bayou Bayou Daily Flow No USGS stream gage to provide daily flows Drainage Area Ratio (DAR) method used to estimate the flow duration curve and daily streamflows

 Nearest streamgages are predominately rural watersheds, DAR modified to account for difference in land cover

Hillebrandt Bayou Daily Flow Drainage Area Ratio – Daily streamflow in an ungaged basin equals the daily streamflow in a nearby gaged basin, multiplied by the ratio of the drainage areas.

• For example if the ungaged basin is half the size of the gaged basin, the daily streamflow is approximately half

Hillebrandt Bayou Daily Flow

- Drainage Area Ratio Assumes ungaged watershed has similar hydrology and land cover as gaged watershed.
- Additional terms and parameters for developed area ratio and wetland area ratio
- Parameter optimization used to weight developed area and wetland area terms
- Streamflows are corrected for permitted discharges

Hillebrandt Bayou Daily Flow

Hillebrandt Bayou Daily Flow

Hillebrandt Bayou Flow Duration Curve

Flow Duration Curve AU 0704_02 - Station 10687

Hillebrandt Bayou Load Duration Curve

Load Duration Curve AU 0704_02 - Station 10687

Total Maximum Daily Load

- TMDL* = Water Quality Criteria x Volume of water per day
 - The TMDL includes allocations for permitted WWTF discharges, regulated stormwater discharges, unregulated stormwater, future growth (FG), and margin of safety (MOS).
 - WLA_{WWTF} Permitted wastewater discharge load allocation
 - WLA_{SW} Regulated stormwater discharge load allocation
 - LA Unregulated stormwater load allocation
 - FG Future growth calculation
 - MOS Margin of Safety

$\mathsf{TMDL} = \mathsf{WLA}_{\mathsf{WWTF}} + \mathsf{WLA}_{\mathsf{SW}} + \mathsf{LA} + \mathsf{FG} + \mathsf{MOS}$

* billion colony forming units per day

Process for Developing Load Duration Curves in Tidal Streams

Plot Flow

Duration Curve

Develop Daily Flows

- Identify location of interest
- Use USGS daily streamflows if available
- Estimate daily streamflows using Drainage Area Ratio
- Account for volume of tidal water moving into Neches River

 Calculate the percent exceedance for every daily mean streamflow value

- Plot flow values against the exceedance values
- Convert daily flow to allowable load (concentration times volume)

Develop Load

Duration Curve

- Plot allowable load against exceedance values
- Overlay measured concentrations converted to daily loads

Modified Load Duration Curve

- Develop salinity to streamflow regression equations at each monitoring station to so we can estimate salinity at mean daily flow values.
- 2. Use a mass-balance equation to estimate the amount of seawater required to achieve the regression estimated salinity values.

Modified Flow Duration Curve

Flow duration curve components - Station 10575

Contact:

Michael Schramm Texas Water Resources Institute (979) 458-9191 michael.schramm@ag.tamu.edu

Dr. Lucas Gregory Texas Water Resources Institute Ifgregory@ag.tamu.edu

http://twri.tamu.edu/neches/lower-neches https://www.tceq.texas.gov/waterquality/tmdl/nav/118-nechestidal-bacteria https://www.tceq.texas.gov/waterquality/tmdl/nav/118-hillebrandtbayou-bacteria

EXTRA SLIDES

Hillebrandt Bayou

Area of Regulated Stormwater

Hillebrandt Bayou

Estimated OSSF Locations

Neches River Tidal

Permitted sources

Neches River Tidal

Estimated OSSF Density

Drainage Area Ratio

•
$$Y = X \left(\frac{A_y}{A_x}\right)^{\Phi} \times \left(\frac{D_y}{D_x}\right)^{\psi} \times \left(\frac{W_y}{W_x}\right)^{\omega}$$

- Y = streamflow for the ungaged location,
- X = streamflow for the gaged location,
- $A_y =$ drainage area for the ungaged location,
- A_x = drainage area for the gaged location,
- D_y = developed area for the ungaged location,
- D_x = developed area for the gaged location,
- W_y = wetland area for the ungaged location,
- W_x = wetland area for the gaged location,
- $\phi, \psi, \omega = \text{estimated parameters.}$

Parameter estimation using quasi-Newton optimization process to minimize RMSE between predicted and measured daily streamflow. Values of ϕ from empirical estimates in Asquith (2006).

Watersheds used to develop DAR parameters

Sims Bayou (USGS 08075400)

Chocolate Bayou (USGS 0807800)

Modified Load Duration Curve

- Develop salinity to streamflow regression equations at each monitoring station to so we can estimate salinity at mean daily flow values.
- 2. Use a mass-balance equation to estimate the amount of seawater required to achieve the regression estimated salinity values.

 $V_s = V_r / (S_s / S_t - 1)$ For $S_t >$ than background salinity, otherwise $V_s = 0$

 $V_S + V_F = V_T$

Hillebrandt Bayou

FDC & **Estimated Daily** Streamflow

